МБОУ "СОШ № 1 города Новоалтайска Алтайского края "

РАССМОТРЕНО руководитель УМО А.В Горлова Протокол №1 «29» <u>августа</u> 2023 г.

ПРИНЯТО на заседании научно-методического совета МБОУ «СОШ № 1 города Новоалтайска Алтайского края» Протокол №1 «29» августа 2023 г.

«УТВЕРЖДАЮ» директор МБОУ «СОШ № 1 города Новоалтайска Алтайского края» О.В. Зинкевич приказ № 275 от «30» августа 2023 г.

Программа элективного курса для учащихся 10^a ; 11^a классов «Решение задач по физике» на 2023 - 2024 учебный год

(программа разработана на основе авторской программы «Готовимся к ЕГЭ по физике» авторы - Л.Н. Терновая, Е.Н. Бурцева, В.А. Пивень)

Рецензенты: программы: Пенкина Л.В. руководитель муниципального профессионального объединения учителей физики

Автор

Устинова Елена Викторовна

учителя физики

Новоалтайск 2023

СОДЕРЖАНИЕ	стр.
1. Пояснительная записка.	3-4
1.1. Цель и задачи курса	3
1.2. Место курса в учебном плане школы	3
1.3. Отличительные особенности рабочей программы	
по сравнению с авторской	3
1.4. Критерии оценки результатов обучения	3
1.5.Перечень учебно-методического обеспечения	4
2. Планируемые образовательные результаты	4-7
3. Содержание курса	7-9
4. Календарно-тематическое планирование курса	9-12
4.1 Учебно-тематический план - 10 класс	9
4.2 Учебно-тематический план - 11 класс	11
5. Лист внесения изменений и дополнений	13

1. Пояснительная записка.

1.1. Цели и задачи курса

• Основная цель курса: создать условия для систематизации и совершенствования уже усвоенных в основном курсе знаний и умений и их углубление, обеспечение дополнительной поддержки учащихся для сдачи ЕГЭ по физике.

Цель может быть достигнута при решении следующих задач:

- познакомить учащихся с классификацией задач по содержанию, целям, способам представления и содержанию информации (части «А», «В», «С»);
- совершенствовать умения решать задачи по алгоритму, аналогии, графически, геометрически и т.д.;
- использовать активные формы организации учебных занятий;
- развивать коммуникативные навыки, способствующие умению вести дискуссию, отстаивать свою точку зрения при обсуждении хода решения задачи;
- использовать нестандартные задачи для развития творческих способностей старшеклассников;
- развивать информационно-коммуникативные умения школьников при выполнении тестовых заданий с помощью компьютера.

1.2. Место элективного курса в учебном плане ОУ

Программа курса рассчитана в 10 классе на 35 часов и предполагает ее изучение в течении учебного года: с учетом 1 часа в неделю, в 11 классе на 34 часа, с учетом 1 часа в неделю.

1.3. Отличительные особенности рабочей программы по сравнению с авторской

Отличительных особенностей рабочей программы по сравнению с авторской нет.

1.4. Критерии оценки результатов обучения

- кратковременные контрольные работы-тесты:

ввиду малочисленности группы учащихся, достаточно двух вариантов работы по 6 задач по любой теме (4 — тип A, 1 — тип B, 1 — тип C).

Оценивание задач контрольной работы: задачи типа A - 1 балл, типа B - 2 балла, типа C - 4 балла.

Оценка «5» - 9-10 баллов, оценка «4» - 7-8 баллов, оценка «3» — 4-6 баллов, оценка «2» - 0-3 балла. Целью контрольной работы в данном случае является не столько оценка и сравнение достижений учащихся, а также предоставление им возможности испытать свои силы. Работа охватывает широкий круг вопросов, а на дом задаются задачи другого варианта работы.

Для итогового тестирования используется два или более вариантов по 10 заданий в каждом.

Распределение задач итогового тестирования по разделам:

Тип A (с выбором ответа — 7 задач): механика -1 задача, молекулярная физика (1), электродинамика (электростатика или постоянный ток - 1, заряженные частицы и токи в магнитном поле или электромагнитная индукция - 1), колебания и волны (1), оптика (1), квантовая физика — 1 задача;

тип В (с кратким свободным ответом — 2 задачи): механика, молекулярная физика, электростатика, постоянный ток (1), магнитное поле, электромагнитная индукция, колебания и волны, оптика (1 задача из любого раздела);

тип C (с развернутым свободным ответом — 1 задача): задача высокого уровня сложности из любого раздела или комбинированная задача с применением законов физики из разных разделов или экспериментальная задача (по фотографии экспериментальной установки).

Оценивание задач экзаменационной работы:

Задача типа А - 1 балл, типа В - 2 балла. типа С - 3 балла.

Критерии оценивания работы итогового тестирования: оценка <5> — 13-15 баллов, <4> — 9-12 баллов, <3> - 6-8 баллов, <2> - 0-5 балла.

1.5. Перечень учебно-методического обеспечения

Литература для учащихся:

- 1. Орлов В.А., Демидова М.Ю., Никифоров Г.Г., Ханнанов Н.К. Оптимальный банк заданий для подготовки учащихся. Единый государственный экзамен 2012. Физика. М.: «Ителлект-Центр», 2012.
- 2.В.И. Николаев, А.М. Шипилин Единый государственный экзамен 2011. Физика. Тематическая рабочая тетрадь. М.: «Экзамен», 2010.
- 3. Фадеева А.А. Интенсивная подготовка. Единый государственный экзамен 2011. Физика. Тематические тренировочные задания. М.: «Эксмо», 2010.
- 4. Кабардин В.Ф., Кабардина С.И., Орлов В.А. Типовые тестовые задания. Физика. ЕГЭ 2012. М.: «Экзамен», 2012.
- 5. Кабардин В.Ф., Кабардина С.И., Орлов В.А. Типовые тестовые задания. Физика. ЕГЭ 2011. М.: «Экзамен», 2011.
- 6. Бобошина С.Б. Физика. Единый государственный экзамен. М.: «Экзамен», 2010.
- 7. Фадеева А.А. Интенсивная подготовка. Единый государственный экзамен 2011. Физика. Тренировочные задания. М.: «Эксмо», 2010.
- 8. Бабаев В.С.. Единый государственный экзамен 2011. Физика. Интенсивная подготовка Единый государственный экзамен. М.: «Эксмо», 2012.
- 9. Янчевская О.В. Физика в таблицах и схемах. С-П.: «Литера», 2006.

Литература для учителя:

- 1. Соболева С.А, Физика. Теоретические материалы, помощь в подготовке к сдаче практического экзамена 2010. М.: «Тригон», 2010.
- 2. Бобошина С.Б. Физика. ЕГЭ 2011. Практикум по выполнению типовых тестовых заданий. М.: «Экзамен», 2011.
- 3. Гельфгат Н.М., Генденштейн Л.Э, Кирик Л.А. 1001 задача по физике.М.: «Алекса», 2007.
- 4. Тренин А.Е. Физика интенсивный курс подготовки к единому государственному экзамену. М.: «Айрис-пресс», 2011.
- 5. Монастырский Л.М. Физика. Подготовка к ЕГЭ 2010. Ростов-на-Дону: «Март», 2009.

2. Планируемые образовательные результаты

Личностными результатами обучения физике в средней (полной) школы являются:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

- умение сотрудничать со сверстниками, детьми младшего возраста, взрослыми в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
- чувство гордости за российскую физическую науку, гуманизм;
- положительное отношение к труду, целеустремленность;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения выпускниками средней (полной) школы программы по физике являются:

Освоение регулятивных универсальных учебных действий:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью; оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей.

Освоение познавательных универсальных учебных действий:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщённые способы решения задач;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательнойдеятельностью и подчиняться).

Коммуникативные универсальные учебные действия:

• осуществлять деловую коммуникацию, как со сверстниками, так и совзрослыми (как внутри образовательной организации, так и за её пределами);

- при осуществлении групповой работы быть как руководителем, так ичленом проектной команды в разных ролях (генератором идей, критиком,исполнителем, презентующим и т. д.);
- развернуто, логично и точно излагать свою точку зрения сиспользованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликтыдо их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения выпускниками средней (полной) школы программы по физике на базовом уровне являются:

- сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания; о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи;
- усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования, владение умениями описывать и объяснять самостоятельно проведенные эксперименты, анализировать результаты полученной измерительной информации, определять достоверность полученного результата;
- сформированность умения решать простые физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и дляпринятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;

• сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

В результате изучения курса физики на уровне среднего общегообразования выпускник научится:

- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учётом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логические цепочки объяснения (доказательства) предложенных в задачах процессов (явлений);
- решать расчётные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить
- физические величины и законы, необходимые и достаточные для её решения,
- проводить расчёты и оценивать полученный результат

Выпускник получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы её применимости и место в ряду других физических теорий;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

3. Содержание курса

10 класс:

- **1.** Эксперимент (1ч). Основы теории погрешностей. Погрешности прямых и косвенных измерений. Представление результатов измерений в форме таблиц и графиков.
- **2. Механика** (12ч). Кинематика поступательного и вращательного движения. Уравнения движения. Графики основных кинематических параметров.

Динамика. Законы Ньютона. Силы в механике: сила тяжести, сила упругости, сила трения, сила гравитационного притяжения. Законы Кеплера.

Статика. Момент силы. Условия равновесия тел. Гидростатика.

Движение тел со связями – приложение законов Ньютона.

Законы сохранения импульса и энергии и их совместное применение в механике. Уравнение Бернулли — приложение закона сохранения энергии в гидро - и аэродинамике.

3. Молекулярная физика и термодинамика (11ч).

Статистический и динамический подходы к изучению тепловых процессов. Основное уравнение МКТ газов.

Уравнение состояния идеального газа — следствие из основного уравнения МКТ. Изопроцессы. *Определение экстремальных параметров в процессах, не являющихся изопроцессами*.

Газовые смеси. Полупроницаемые перегородки.

Первый закон термодинамики и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

Второй закон термодинамики, расчёт КПД тепловых двигателей, круговых процессов и цикла Карно.

Поверхностный слой жидкости, поверхностная энергия и натяжение. Смачивание. Капиллярные явления. Давление Лапласа.

4. Электродинамика (электростатика и постоянный ток) (11 ч). Электростатика. Напряжённость и потенциал электростатического поля точечного и распределённого зарядов. Графики напряжённости и потенциала. Принцип суперпозиции электрических полей. Энергия взаимодействия зарядов.

Конденсаторы. Энергия электрического поля. *Параллельное и последовательное соединения конденсаторов*. *Перезарядка конденсаторов*. Движение зарядов в электрическом поле.

Постоянный ток. Закон Ома для однородного участка и полной цепи. Расчёт разветвлённых электрических цепей. *Правила Кирхгофа. Шунты и добавочные сопротивления*. *Нелинейные элементы в цепях постоянного тока*.

11 класс:

1. Электродинамика (магнитное поле, электромагнитная индукция) (6ч)

Магнитное поле. Принцип суперпозиции магнитных полей. Силы Ампера и Лоренца. Суперпозиция электрического и магнитного полей.

Электромагнитная индукция. Применение закона электромагнитной индукции в задачах о движении металлических перемычек в магнитном поле. Самоиндукция. Энергия магнитного поля.

2. Колебания и волны (10ч)

Механические гармонические колебания. Простейшие колебательные системы. Кинематика и динамика механических колебаний, превращения энергии. Резонанс.

Электромагнитные гармонические колебания. Колебательный контур, превращения энергии в колебательном контуре. Аналогия электромагнитных и механических колебаний.

Переменный ток. Резонанс напряжений и токов в цепях переменного тока. Векторные диаграммы.

Механические и электромагнитные волны. Эффект Доплера.

3. Оптика (11ч)

Геометрическая оптика: Закон отражения и преломления света. Построение изображений неподвижных и движущихся предметов в тонких линзах, плоских и сферических зеркалах. Оптические системы. Прохождение света сквозь призму.

Волновая оптика: Интерференция света, условия интерференционных максимумов и минимумов. Расчёт интерференционной картины (опыт Юнга, зеркало Ллойда, зеркала, бипризма и билинза Френеля, кольца Ньютона, тонкие плёнки, просветление оптики). Дифракция света. Дифракционная решётка. Дисперсия света.

4. Квантовая физика (6ч)

Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта.

Применение постулатов Бора для расчёта линейчатых спектров излучения и поглощения энергии водородоподобными атомами. Волны де Бройля для классической и релятивистской частиц.

Атомное ядро. Закон радиоактивного распада. Применение законов сохранения заряда, массового числа, импульса и энергии в задачах о ядерных превращениях.

4Календарно-тематическое планирование курса

4.1 Учебно-тематический план - 10 класс

Сроки	№		Количество часов	
	заняти	Тема	теоретич	практич
	Я		еских	еских
		I. Эксперимент (1ч)		
	1/1	Основы теории погрешностей.	1	
		II. Механика (12ч)		
	2/1	Кинематика поступательного и вращательного	1	
		движения. Уравнения движения. Графики		
		основных кинематических параметров.		
	3/2	Решение задач по кинематике поступательного и		1
		вращательного движения.		
	4/3	Решение задач по теме «Графики основных		1
		кинематических параметров»		
	5/4	Решение задач по теме «Свободное падение»		1
	6/5	Решение задач по теме «Движение тела под		1
		действием силы тяжести, если начальная		
		скорость направлена горизонтально или под		
		углом к горизонту »		
	7/6	Динамика. Законы Ньютона. Силы в механике.	1	
	8/7	Решение задач по теме «Законы Ньютона»		1
	9/8	Решение задач по теме «Силы в механике»		1
	10/9	Решение задач по теме «Законы сохранения»		1
	11/10	Решение задач по теме «Законы сохранения»		1
	12/11	Решение задач по теме «Статика»		1
	13/12	Решение задач по теме «Гидростатика»		1

		Всего часов в курсе:	ĺ	35ч.
		Итого:	8 ч.	26 ч.
	35/11	Итоговое занятие	0	1
	34/10	Итоговое занятие		1
	24/10	электрического тока.		1
	33/9	Решение задач на расчет работы мощности		1
	22/0	цепи»		1
	32/8	Решение задач по теме «Закон Ома для полной		1
	31/7	Расчет разветвленных электрических цепей.		1
	21 /7	участка и полной цепи.		
	30/6	Постоянный ток. Закон Ома для однородного	1	
	2015	зарядов в электрическом поле»	1	
	29/5	Решение задач по теме «Движение электрических		1
		электрического поля»		
	28/4	Решение задач по теме « Конденсаторы. Энергия		1
		зарядов»		
		электрических полей. Энергия взаимодействия		
	27/3	Решение задач по теме «Принцип суперпозиции		1
		заряда. Графики напряженности и потенциала»		
		потенциал электростатического поля точечного		
-	26/2	Решение задач по теме «Напряженность и		1
	25/1	Электростатика.	1	
		IV. Электродинамика (11ч)		
		двигателей.		
	24/11	Решение задач на расчёт КПД тепловых		1
		тепловых двигателей.		
	23/10	Второй закон термодинамики, расчет КПД	1	
	22/9	Решение задач на уравнение теплового баланса		1
		вещества»		
	21/8	Решение задач по теме «Агрегатные состояния		1
		термодинамики»		
	20/7	Решение задач по теме «Первый закон		1
		состояний веществ. Насыщенный пар.		
		системы. Термодинамика изменения агрегатных		
		для различных процессов изменения состояния		
	19/6	Первый закон термодинамики и его применение	1	
	18/5	Решение задач по теме «Изопроцессы»		
	1771	«Изопроцессы»		
	17/4	Решение графических задач по теме		1
	10/3	идеального газа»		1
	16/3	Решение задач по теме «Уравнение состояния		1
	15/2	Решение задач по теме «Основное уравнение МКТ»		1
	1.5./0	состояния идеального газа. Изопроцессы.		
	14/1	Основное уравнение МКТ газов. Уравнение	1	

4.2 Учебно-тематический план - 11 класс

Сроки	№ заняти я		Количество часов	
		Тема	теоретич еских	практич еских
		I . Электродинамика (продолжение)- (6ч)		
	1/1 Магнитное поле. Силы Ампера и Л		1	
		Электромагнитная индукция		
	2/2 Решение задач по теме «Магнитное поле.			1
	Принцип суперпозиции магнитных полей			
	3/3	Решение задач по теме «Сила Ампера»		1
	4/4	Решение задач по теме «Сила Лоренца»		
	5/5	Решение задач по теме «Электромагнитная		1
		индукция»		
	6/6	Движение металлических перемычек в магнитном		
		поле. Самоиндукция.		
		П. Колебания и волны (10 ч)		
	7/1	Механические колебания. Кинематика и	1	
		динамика механических колебаний, превращения		
		энергии.		
	8/2	Решение задач по теме «Кинематика		1
		механических колебаний»		
	9/3	Решение задач по теме «Превращения энергии		1
		при механических колебаниях»		
	10/4	Электромагнитные гармонические колебания.	1	
		Колебательный контур, превращения энергии в		
		колебательном контуре.		
	11/5	Решение задач по теме «Электромагнитные		1
		колебания в контуре»		
	12/6	Решение задач по теме «Превращения энергии в		1
		колебательном контуре»		
	13/7	Решение задач по теме «Переменный ток»		1
	14/8	Решение задач по теме «Резонанс напряжений и		
		токов»		
	15/9	Решение задач по теме «Механические и		1
		электромагнитные волны»		
	16/10	Векторные диаграммы		
		III. Оптика (11 ч)		
	17/1	Геометрическая оптика. Закон отражения и	1	
		преломления света		
	18/2	Решение задач по теме «Законы преломления»		1
	19/3	Решение задач по теме «Ход лучей в треугольной		
		призме»		
	20/4	Построение изображений предметов в тонких		1
		линзах		
	21/5	Построение изображений в плоских зеркалах		1
	22/6	Решение задач на формулу тонкой линзы		1
	23/7	Волновая оптика	1	1
	24/8	Решение задач по теме «Интерференция света,		1
		условия интерференционного максимума и		
		минимума»		
	25/9	Решение задач по теме «Интерференция света,		
		условия интерференционного максимума и		

	Всего часов в курсе:		34ч
	Итого:	6 ч	28 ч
34	Итоговое занятие		1
	распада в задачах о ядерных превращениях»		
33/6	Решение задач по теме «Применение законов		1
	распада»		
32/5	Решение задач по теме «Закон радиоактивного		1
	Бора»		
31/4	Решение задач по теме «Применение постулатов		1
30/3	Решение задач по теме «Законы фотоэффекта»		
29/2	Решение задач по теме «Уравнение Эйнштейна»		1
	превращениях.		
	массового числа в задачах о ядерных		
	Применение законов сохранения заряда,		
	Атомное ядро. Закон радиоактивного распада.		
28/1	Фотон. Уравнение Эйнштейна для фотоэффекта.	1	
	IV. Квантовая физика (6 ч)		
27/11	Решение задач по теме «Волновая оптика»		1
	решетка»		
26/10	Решение задач по теме «Дифракционная		1
	минимума»		

5. Лист внесения изменений и дополнений

№ п/п	Класс	Дата внесенных изменений, дополнений	Содержание внесенных изменений, дополнений	Обоснование внесенных изменений, дополнений	Подпись сотрудника, внесшего изменения